158 research outputs found

    Capacities of Quantum Amplifier Channels

    Get PDF
    Quantum amplifier channels are at the core of several physical processes. Not only do they model the optical process of spontaneous parametric down-conversion, but the transformation corresponding to an amplifier channel also describes the physics of the dynamical Casimir effect in superconducting circuits, the Unruh effect, and Hawking radiation. Here we study the communication capabilities of quantum amplifier channels. Invoking a recently established minimum output-entropy theorem for single-mode phase-insensitive Gaussian channels, we determine capacities of quantum-limited amplifier channels in three different scenarios. First, we establish the capacities of quantum-limited amplifier channels for one of the most general communication tasks, characterized by the trade-off between classical communication, quantum communication, and entanglement generation or consumption. Second, we establish capacities of quantum-limited amplifier channels for the trade-off between public classical communication, private classical communication, and secret key generation. Third, we determine the capacity region for a broadcast channel induced by the quantum-limited amplifier channel, and we also show that a fully quantum strategy outperforms those achieved by classical coherent detection strategies. In all three scenarios, we find that the capacities significantly outperform communication rates achieved with a naive time-sharing strategy.Comment: 16 pages, 2 figures, accepted for publication in Physical Review

    Energy-Constrained Quantum Communication and Digital Dynamical Decoupling

    Get PDF
    This is a two-part thesis glued together by an everlasting theme in Quantum Information Science \-- to save the quantum state, or the information stored in it, from unavoidably environment-induced noise. The first part of this thesis studies the ultimate rate of reliably transmitting information, stored in quantum systems, through a noisy evolution. Specifically, we consider communication over optical links, upon which future inter-city quantum communication networks will be built. We show how to treat the infinite-dimensional bosonic system rigorously and establish the theory of energy-constrained private and quantum communication over quantum channels. Our result represents important progress in the field of energy-constrained quantum communication theory. As an example of communication over optical channels, we solve the triple trade-off capacity and broadcast capacity of quantum-limited amplifier channels. Our result not only includes two single-letter capacities, which are rare in quantum communication theory, but it is also the only known application of a recently proved minimum output-entropy conjecture. The second part of my thesis includes two of my works on dynamical decoupling (DD). DD is an open-loop technique to keep a qubit alive during decoherence, which is important for the actual implementation of quantum memory or a quantum computer. Instead of treating quantum evolution as a completely positive trace preserving map like in communication theory, we consider time-dependent evolution of a specific quantum system in quantum control theory. With more than decade of development of the theory of DD, people started to focus on pulse sequences with low sequencing complexity (called digital pulse sequences), which are required for large-scale implementation of quantum computation devices. We propose two unifying frameworks to systematically generate these engineering-friendly pulse sequences. Surprisingly, we prove that these two frameworks are actually two sides of the same coin, and thus our work greatly deepens our understanding of the underlying structure and the decoupling performance of digital pulse sequences

    Applications of position-based coding to classical communication over quantum channels

    Get PDF
    Recently, a coding technique called position-based coding has been used to establish achievability statements for various kinds of classical communication protocols that use quantum channels. In the present paper, we apply this technique in the entanglement-assisted setting in order to establish lower bounds for error exponents, lower bounds on the second-order coding rate, and one-shot lower bounds. We also demonstrate that position-based coding can be a powerful tool for analyzing other communication settings. In particular, we reduce the quantum simultaneous decoding conjecture for entanglement-assisted or unassisted communication over a quantum multiple access channel to open questions in multiple quantum hypothesis testing. We then determine achievable rate regions for entanglement-assisted or unassisted classical communication over a quantum multiple-access channel, when using a particular quantum simultaneous decoder. The achievable rate regions given in this latter case are generally suboptimal, involving differences of Renyi-2 entropies and conditional quantum entropies.Comment: v4: 44 pages, v4 includes a simpler proof for an upper bound on one-shot entanglement-assisted capacity, also found recently and independently in arXiv:1804.0964

    Regimes of classical simulability for noisy Gaussian boson sampling

    Full text link
    As a promising candidate for exhibiting quantum computational supremacy, Gaussian Boson Sampling (GBS) is designed to exploit the ease of experimental preparation of Gaussian states. However, sufficiently large and inevitable experimental noise might render GBS classically simulable. In this work, we formalize this intuition by establishing a sufficient condition for approximate polynomial-time classical simulation of noisy GBS --- in the form of an inequality between the input squeezing parameter, the overall transmission rate and the quality of photon detectors. Our result serves as a non-classicality test that must be passed by any quantum computationalsupremacy demonstration based on GBS. We show that, for most linear-optical architectures, where photon loss increases exponentially with the circuit depth, noisy GBS loses its quantum advantage in the asymptotic limit. Our results thus delineate intermediate-sized regimes where GBS devices might considerably outperform classical computers for modest noise levels. Finally, we find that increasing the amount of input squeezing is helpful to evade our classical simulation algorithm, which suggests a potential route to mitigate photon loss.Comment: 13 pages, 4 figures, final version accepted for publication in Physical Review Letter

    Energy-constrained private and quantum capacities of quantum channels

    Get PDF
    This paper establishes a general theory of energy-constrained quantum and private capacities of quantum channels. We begin by defining various energy-constrained communication tasks, including quantum communication with a uniform energy constraint, entanglement transmission with an average energy constraint, private communication with a uniform energy constraint, and secret key transmission with an average energy constraint. We develop several code conversions, which allow us to conclude non-trivial relations between the capacities corresponding to the above tasks. We then show how the regularized, energy-constrained coherent information is equal to the capacity for the first two tasks and is an achievable rate for the latter two tasks, whenever the energy observable satisfies the Gibbs condition of having a well-defined thermal state for all temperatures and the channel satisfies a finite output-entropy condition. For degradable channels satisfying these conditions, we find that the single-letter energy-constrained coherent information is equal to all of the capacities. We finally apply our results to degradable quantum Gaussian channels and recover several results already established in the literature (in some cases, we prove new results in this domain). Contrary to what may appear from some statements made in the literature recently, proofs of these results do not require the solution of any kind of minimum output entropy conjecture or entropy photon-number inequality

    Entanglement-assisted private communication over quantum broadcast channels

    Get PDF
    We consider entanglement-assisted (EA) private communication over a quantum broadcast channel, in which there is a single sender and multiple receivers. We divide the receivers into two sets: the decoding set and the malicious set. The decoding set and the malicious set can either be disjoint or can have a finite intersection. For simplicity, we say that a single party Bob has access to the decoding set and another party Eve has access to the malicious set, and both Eve and Bob have access to the pre-shared entanglement with Alice. The goal of the task is for Alice to communicate classical information reliably to Bob and securely against Eve, and Bob can take advantage of pre-shared entanglement with Alice. In this framework, we establish a lower bound on the one-shot EA private capacity. When there exists a quantum channel mapping the state of the decoding set to the state of the malicious set, such a broadcast channel is said to be degraded. We establish an upper bound on the one-shot EA private capacity in terms of smoothed min- and max-entropies for such channels. In the limit of a large number of independent channel uses, we prove that the EA private capacity of a degraded quantum broadcast channel is given by a single-letter formula. Finally, we consider two specific examples of degraded broadcast channels and find their capacities. In the first example, we consider the scenario in which one part of Bob's laboratory is compromised by Eve. We show that the capacity for this protocol is given by the conditional quantum mutual information of a quantum broadcast channel, and so we thus provide an operational interpretation to the dynamic counterpart of the conditional quantum mutual information. In the second example, Eve and Bob have access to mutually exclusive sets of outputs of a broadcast channel.Comment: v2: 23 pages, 2 figures, accepted for publication in the special issue "Shannon's Information Theory 70 years on: applications in classical and quantum physics" for Journal of Physics
    corecore